-

$$
m^{2}-\frac{\pi}{8}
$$

Technical catalogue

Automatic Transfer Switches

ATS

Automatic Transfer Switches

An automatic transfer switch continuously monitors utility power. When the utility power failures, the transfer switch will signal the generator to start. Once the generator has reached operating speeds with correct frrquency and voltage levels, the transfer switch will disconnect the unility source and connect the generator.

After the utility power is restores, the automatic transfer switch returns the load to the grid. The generator automatically shuts down

B B < HanKwang
 ELECTRIC
 Electric Co.,Ltd.

@ Automatic Transfer Switches - ATS
is a collaborative product between two electrical equipment manufacturers Hankwang and BTB electric

Contents

02 General

03 Automatic Transfer Switches - N type
06 Automatic Transfer Switches - TN type
05 Automatic Transfer Breaker - ATB type
31 Automatic Transfer Switches Controller - Hanpro1000
33 Automatic Transfer Switches Controller - ATbS C55

General

Applied standard

IEC-60947-6-1

IEC-60947-2-1
BS 4652 part 1
VDE 0660

ANSI (27.13)
KSC 8325

Operating conditions

Ambient temperature: Automatic Transfer Switches can be used in ambient conditions where the surrounding air temperature varies between $-20^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$, and stored in ambients with temperatures between $-25^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$

- Altitude: Below 2,000m above sea level.

Mounting conditions: Perpendicularity and angularity $\leq 10^{\circ}$

Unique features

- Protection function of Circuit Breaker with digital overcurrent unit. Protection provided for overload, short circuit and ground faults.
- By-Pass Operation without interruption to load side.
- Manual operating facility available.
- Overlapping Neutral Pole.
- ATS and By-Pass switches are withdrawable.
- Single frame compact design saving space.
- User-friendly microprocessor controller.
- LCD display with monitoring and measurements.
type

Automatic Transfer Switches

Application scope

Electromagnetic operation, coupled with a power-saving structure facilitated by the transient excitation method, ensures a dependable power supply. Automatic Transfer Switches of the N type are well-suited for factories, hospitals, and residential settings with modest power requirements,
 necessitating swift switching between power sources.

Salient features

- Outstanding switching performance and reliable operational function.
- Compact and lightweight design enabling rapid switching (within 15 milliseconds).
- The molded breaking component, completely sealed, not only prevents electric shock but also guards against electric accidents caused by foreign substances.
- The operation sequence supports both AC and DC power sources.
- Ensures safety under varying flow-current conditions, with minimized operating current maximizing flow current performance.
- Robust protection is provided through a latch structure.
- Features a double throw type design for enhanced functionality.

Image and structure

Selection table

Dimensions

2P
Side View

3P

$\begin{gathered} \text { } 63 \mathrm{~A} \\ \sim \end{gathered}$	(mm)			$\begin{aligned} & 200 \mathrm{~A} \\ & 250 \mathrm{~A} \end{aligned}$	(mm)		
	2P	3P	4 P		2P	3 P	4P
A	190	225	265	A	197	236	275
B	160	195	235	B	167	206	245
C	36			C	38.5		
D	36			D	38.5		
E	16			E	16.5		
F	20			F	22		
G	3			G	4		

AC Control sequence

Part Name		Operation Terminal)	
$A C$	A Close Coil	$A 1, A 2$	" A " Power Terminal
$B C$	B Close Coil	$B 1, B 2$	" B " Power Terminal
$A U X$	Auxiliary Switch		
$A X, B X$	Control switch		

type

Automatic Transfer Switches

Application scope

Electromagnetic operation, paired with an energy-saving design supported by transient excitation, guarantees reliable power. TN type automatic power transfer switches are highly suitable for environments such as factories, construction sites, and apartment complexes that demand substantial power
 sources and necessitate seamless switching between power sources via the "OFF" position.

Salient features

- Excellent swithching performance and unfailing operation function.
- Most suitable for emergency power facility which is neutral position.
- The molded breaking component, completely sealed, not only prevents electric shock but also guards against electric accidents caused by foreign substances.
- The operation sequence supports both AC and DC power sources.
- Ensures safety under varying flow-current conditions, with minimized operating current maximizing flow current performance.
- Robust protection is provided through a latch structure.

Features a double throw type design for enhanced functionality.

Image and structure

Selection table

Type		HK-100/125TN	HK-200/250TN
Rated operational current, In		100/125A	200/250A
Rated Operational Voltage, Ue		AC600V, DC125V	
Rated Insulation Voltage, Ui		690 V	
Impulse Withstand Voltage, Uimp		8kV	
No. of Pole		2, 3, 4	
Powercable connection method		Front bus bar connection	
Reference Standard		IEC 60947-6-1 / UL1008	
Rated short-time withstand current, Icw		5 kA	7kA
Rated short-circuit making capacity, Icm		5 kA	7kA
Switch capacity	Class	AC3, DC1	
Life time	Electric	5000 time	
	Mechanic	10000 time	
Switching frequency	time/h	150 time/h	
Switching sequence		$A \leftrightarrow B, A \leftrightarrow O F F \leftrightarrow B$	
Operating Time	Break(Opening)	$\leq 30 \mathrm{~ms}$	
	Make Closing	$\leq 60 \mathrm{~ms}$	
	Make delay(Off)	$\leq 30 \mathrm{~ms}$	
Operating Voltage \& Current	AC110/120V	20A	
	AC220/240V	10A	
Control voltage	Max	110\% Rated operating voltage	
	Min	85\% Rated operating voltage	
Withstand Voltage for Main circuit		2500V/60s	
Withstand Voltage for Control circuit		$1500 \mathrm{~V} / 60 \mathrm{~s}$	
Weight	2P	5 kg	6 kg
	3P	6.5 kg	8kg
	4P	8kg	9.5 kg
Dimensions (WxLxH)	2P	$220 \times 120 \times 215 \mathrm{~mm}$	
	3P	$257 \times 120 \times 215 \mathrm{~mm}$	
	4P	$294 \times 120 \times 215 \mathrm{~mm}$	

Selection table

HK-800TN	HK-1000/1250TN	HK-1600TN	HK-2000/2500TN	HK-3000/3200TN
800A	1000/1250A	1600A	2000/2500A	3000/3200A
AC600V, DC125V			AC690V, DC250V	
690 V			800V	
8kV				
3, 4				
Rear bus bar connection				
IEC 60947-6-1 / UL1008				
16kA	25kA	32kA	50kA	
16kA	25kA	32kA	50kA	
AC3, DC1			AC3, DC1	
5000 time			3000 time	
10000 time			5000 time	
150 time/h			100 time/h	
$\mathrm{A} \leftrightarrow \mathrm{B}, \mathrm{A} \leftrightarrow \mathrm{OFF} \leftrightarrow \mathrm{B}$				
$\leq 30 \mathrm{~ms}$		$\leq 30 \mathrm{~ms}$	$\leq 35 \mathrm{~ms}$	
$\leq 60 \mathrm{~ms}$		$\leq 130 \mathrm{~ms}$	$\leq 150 \mathrm{~ms}$	
$\leq 30 \mathrm{~ms}$		$\leq 30 \mathrm{~ms}$	$\leq 30 \mathrm{~ms}$	
24A		30A	35A	
12A		15A	18A	
110\% Rated operating voltage				
85\% Rated operating voltage				
2500V/60s			3000V/60s	
1500V/60s			1500V/60s	
14 kg	22 kg	24 kg	50 kg	84 kg
16kg	26 kg	28 kg	60kg	100kg
$344 \times 184 \times 241$ mm	$417 \times 182 \times 270 \mathrm{~mm}$	$457 \times 264 \times 380 \mathrm{~mm}$	$500 \times 412 \times 465 \mathrm{~mm}$	
$405 \times 184 \times 241 \mathrm{~mm}$	$502 \times 182 \times 241 \mathrm{~mm}$	$540 \times 264 \times 380 \mathrm{~mm}$	$640 \times 412 \times 465 \mathrm{~mm}$	

Dimensions

Front type 100A~250A

Front View

Side View

100A	(mm)		
$\sim 250 \mathrm{~A}$	2 P	3 P	4 P
A	220	257	294
B	116	153	190

Front type 400A~500A

400A	(mm)	
$\sim 500 \mathrm{~A}$	$3 P$	4 P
A	286	332
B	182	228

Dimensions

Front type 630A

Front View

Back type 800A

Front View

Bottom View

600 A		$(\mathrm{~mm})$
$\sim 800 \mathrm{~A}$	3 P	4 P
A	344	405
B	226	287
C	189	250

Dimensions

Back type 1000A~1250A

Back type 1600A

Front View

Side View

Bottom View

Dimensions

Back type 2000A~3200A 3P

Front View

2000~2500A Bottom View

3200A Bottom View

Side View

2000~2500A Back View

3200A Back View

Dimensions

Back type 2000A~3200A 4P

Front View

2000~2500A Bottom View

3200A Bottom View

Side View

2000~2500A Back View

3200A Back View

Application scope

Automatic Transfer Breaker operates on the principle of electromechanical energy, compatible with ACB operation.

Automatic Transfer Breaker - ATB type possesses the capability to transmit power without disrupting the power supply to the load. It is designed to withstand substantial switching currents, making it particularly suitable for
 critical loads found in environments such as airports, hospitals, institutes, and high-tech industrial plants.

Salient features

- Based on IEC 60947-6-1, 2 AC-33B become 1 ATB combine
- Compact and light design products with high breaking capacity
- Closed transient transfer switch and bypass functional products
- Sychronizing operation available between genset or between genset and main power
- Breaker type contact structure
- Protection relay (OCR, GR) available
- Safety operation and movement applying high quality arc chamber at the breaking component
- Safety flow-current condition, minimized operating current maximizes function of flow current performance

Image and structure

Selection table

Type		ATB-06EX	ATB-08EX	ATB-10EX	ATB-12EX
Rated operational current, In		630A	800A	1000A	1250A
Rated Operational Voltage, Ue		690 V			
Rated Insulation Voltage, Ui		1000V			
Impulse Withstand Voltage, Uimp		12kV			
No. of Pole		3, 4			
Neutral Pole		Overlapping Contact			
Power cable connection method		Front bus bar connection			
Reference Standard		IEC 60947-6-1			
Rated short-time withstand current, Icw	at 460 V	50kA			
Rated short-circuit making capacity, Icm	at 460 V	110kA			
Life time	Electric	3000 time			
	Mechanic	10000 time			
Max. Trip time		40 ms			
Max. Closing time		60 ms			
Time of Motor Charging [Max.]		10s			
Control voltage	Max	110\% Rated operating voltage			
	Min	85\% Rated operating voltage			
Withstand Voltage for Main circuit		3000V/60s			
Withstand Voltage for Control circuit		1500V/60s			
Weight	3P - Fixed	100	105		110
	4P-Fixed	110	115		120
	3P - Drawable	135	142		150
	4P - Drawable	150	155		162
Dimensions (WxLxH)	3P - Fixed	$517 \times 578 \times 610$			
	4P-Fixed	$517 \times 578 \times 610$			
	3P - Drawable	$572 \times 690 \times 665$			
	4P - Drawable	$572 \times 690 \times 665$			

ATB-16EX	ATB-20EX	ATB-25EX	ATB-32EX	ATB-40EX	ATB-50EX	ATB-63EX
1600A	2000A	2500A	3200A	4000A	5000A	6300A
690 V						
1000 V						
12kV						
3, 4						3
Overlapping Contact						
Front bus bar connection						
IEC 60947-6-1						
50kA	65kA			85kA		100kA
110kA	143kA			187kA		220kA
3000 time				3000 time		
10000 time				6000 time		
40 ms				50 ms		
60 ms				80 ms		
10s				10s		
110\% Rated operating voltage						
85\% Rated operating voltage						
$3000 \mathrm{~V} / 60 \mathrm{~s}$						
1500V/60s						
130	140	150	160	190	190	205
140	150	160	170	255	255	270
176	190	203	216	330	330	-
190	203	216	230	435	435	-
$517 \times 578 \times 610$	$517 \times 578 \times 610$			$717 \times 633 \times 610$		$717 \times 633 \times 610$
$517 \times 578 \times 610$	$617 \times 578 \times 610$			$917 \times 633 \times 610$		$917 \times 633 \times 610$
$572 \times 690 \times 665$	$572 \times 690 \times 665$			$772 \times 740 \times 665$		-
$572 \times 690 \times 665$	$672 \times 690 \times 665$			$972 \times 740 \times 665$		-

Dimensions
630~1600A Fixed Type

Vertical

A BUS BAR Dimensions

(mm)	$630 \sim 800 \mathrm{~A}$		1000A		1250A		1600 A	
	$3 P$	4 P	3 P	4 P	3 P	4 P	3 P	4 P
A	8		10		12		15	

Dimensions
630~1600A Drawable Type

Vertical

Δ Front

A BUS BAR Dimensions

(mm)	$630 \sim 800 \mathrm{~A}$		1000 A		1250 A		1600 A	
	3 P	4 P	3 P	4 P	3 P	4 P	3 P	4 P
A	8		10		12		15	

Horizontal

\triangle Front

Dimensions

2000~3200A Fixed Type

Horizontal

Front

Δ Front

Dimensions

2000~3200A Drawable Type

2000~3200A Fix / Draw
A BUS BAR Dimensions

(mm)	2000A		2500A		3200A	
	$3 P$	$4 P$	$3 P$	$4 P$	$3 P$	$4 P$
A	572	672	572	672	572	672
B	15		20		25	

Horizontal

Front

Dimensions
4000~5000A 3P Fixed Type

Dimensions
4000~5000A 3P Drawable Type

Dimensions
4000~5000A 4P Fixed Type

Dimensions
4000~5000A 4P Drawable Type

Dimensions

6300A 3P Fixed Type

Front View

Horizontal

Side View

Bottom View

Front

Front

Dimensions

6300A 4P Fixed Type

Front View

6300A Fix

- BUS BAR Dimensions

Side View

Front

Bottom View

Part Name				Operation Terminal			
M	Charging Motor	ACC	"A"Side ClosingCoil	01,02	"A"Side Charging Motor Power Terminal	09,10	"B"Side Input Power Terminal
		ATC	"A"Side Trip Coil	03, 04	"B"Side Charging Motor Power Terminal	11,12	"B"Side Trip Power Terminal
		BCC	"B"Side ClosingCoil	05,06	"A"Side Input Power Terminal	13~20	"A"Side Auxiliary Contact Terminal
		BTC	"B"Side Trip Coil	07,08	"A"Side Trip Power Terminal	31~38	"B"Side Auxiliary Contact Terminal

DC Control sequence

Hanpro

Application scope

Controller - Hanpro1000 is used to control Automatic Transfer Switches N type and TN type.

Controller - Hanpro1000 displays intuitively, is easy to use, and has an OFF mode when switching between two power sources to ensure safety for ATS.

Salient features

- Off delay for Arc remove
- Malfunction prevent when transfering A to B (or B to A)
- Micro CPU type
- Operation Sequence : A \leftrightarrow OFF $\leftrightarrow B / B \leftrightarrow O F F \leftrightarrow A$

Description

Model	Hanpro
System Voltage	AC220V
Rated frequency	$50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
Transformer Burden	$3 \mathrm{VA}[\mathrm{AC}]$
Insulation	$1.5 \mathrm{kV} / 1 \mathrm{~min}$
Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$-20 \sim+60$

Image and structure

Display and functions

(1) A power source lamp
(2) B power source lamp
(3) (4) Time delay display lamp
(5) Normal power "ON" delay timer
(6) Emergency power "ON" delay timer
(7) A source "ON" push button
(8) B source "ON" push button
(9) Auto, Manual selection button.
(Press and hold the manual button for more than 3 seconds to trip the switch.)
(10) Status display flickering lamps

Dimensions

DIN 96

ANSI 4

ATS TN type connecction diagram

Part Name			
CC	Closing Coil	AX, BX	Input Limit Switch
SC	Selection Coil	SS	Selection Switch
TC	Trip Coil	TS1-TS4	Trip Control Switch
Si	Silicon Rectifier	AUX	Auxiliary Contact Switch
Operation Terminal			
A1-A2	"A" Side Input Power Terminal	a1~a4	"A" Side Auxiliary Contact Terminal
B1-B2	"B" Side Input Power Terminal	b1~b4	"B" Side Auxiliary Contact Terminal
AT1-AT2	"A" Side Trip Power Terminal		
BT1-BT2	"B"Side Trip Power Teminal		

ATS N type connecction diagram

Part Name		Operation Terminal	
AC	"A" Side Closing Coil	A1-A2	"A" Side Input Power Terminal
BC	"B" Side Closing Coil	$\mathrm{B} 1-\mathrm{B} 2$	"B" Side Input Power Terminal
Si	Silicon Rectifier	$\mathrm{C1}, \mathrm{a} 3, \mathrm{a} 4$	"A" Side Auxiliary Terminal 2 a
AUX	Auxiliary Contact Switch	$\mathrm{C} 2, \mathrm{~b} 3, \mathrm{~b} 4$	"B" Side Auxiliary Terminal 2 b

ATbS

Automatic Transfer Switches Controller

Application scope

The ATbS C55 dual-power ATS controller is a comprehensive module for dual-power transfer. It comes equipped with configurable functions, automatic measurement capabilities, an LCD display, and digital communication.

By integrating digital intelligence and networking, it automates measurement and control processes, reducing the potential for human errors
 during operation. Designed for versatility, the ATbS C55 is compatible with non-breaking, one-breaking, and two-breaking switches.

Salient features

- System type can be set to: Mains - Generator, Generator - Mains, Mains - Mains
- Auto/Manual mode transfer function: in manual mode, user can control the switch to close or open
- Commissioning can be done on site manually to execute genset start/stop operations
- 2-way N wire isolated design
- AC supply power can be phase voltage (L, N), supply range: (170~277)V
- Suitable for various AC system types (3-phase 4-wire, single-phase 2-wire, and 2-phase 3-wire)
- Breaker close output can be set to pulse or continuous output
- Over/under voltage, over/under frequency, loss of phase reverse phase sequence function

Image and structure

Description

Operating voltage	$170 \sim 277 \mathrm{~V}$
AC voltage input	$3 \mathrm{P} 4 \mathrm{~W}(170 \sim 277 \mathrm{~V}$ ph-N $) / 1 \mathrm{P} 2 \mathrm{~W}(170 \sim 277 \mathrm{~V})$
Rated frequency	$50 / 60 \mathrm{~Hz}$
Control	A<-> B or A <-> OFF <-> B or 2 ACB or 2 Contactor
System type set	A Mains B Gen / A Gen B Mains / A Mains B Mains
Switch type	Two Breaking / One Breaking / No Breaking
AC system	AC system: 3P4W / 3P3W / 2P3W / 1P2W
Auxiliary output setting	Yes
Auxiliary input setting	Yes
Function	Over/under voltage, over/under frequency, reverse phase sequence loss
Close / Open relay capacity	$8 \mathrm{CA} / 250 \mathrm{VAC}$

Main function description

Key	Function	Description
@/ A	Manual/Auto Key	Used to transfer between Manual or Auto mode.
Active in manual mode; Press to close the A power switch and supply the load		
with A power.		

ATS TN type connecction diagram

ATS N type connecction diagram

ATS connection diagram from 2ACB

MCH: Energy-saving motor; MN: Undervoltage trip; MX: Open coil; XF: Close coil

Dimensions

CUTOUT

B08
 ELECTRIC
 REALVALUE F○RLIFE

